Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Dev Neurosci ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710171

RESUMEN

INTRODUCTION: Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. METHODS: A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. RESULTS: Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one time point during hypoxia-ischemia. This study also highlights a balance between left-sided and right-sided alterations within the population. CONCLUSION: This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.

2.
Quant Imaging Med Surg ; 14(2): 1916-1929, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415136

RESUMEN

Background: Enlarged deep medullary veins (EDMVs) in patients with Sturge-Weber syndrome (SWS) may channel venous blood from the surface to the deep vein system in brain regions affected by the leptomeningeal venous malformation. Thus, the quantification of EDMV volume may provide an objective imaging marker for this vascular compensatory process. The present study proposes a novel analytical method to quantify enlarged EDMV volumes in the affected hemisphere of patients with unilateral SWS. Methods: Twenty young subjects, including 10 patients with unilateral SWS and 10 healthy siblings (age 14.5±6.7 and 16.0±7.0 years, respectively) underwent 3T brain MRI scanning using susceptibility-weighted imaging (SWI) and volumetric T1-weighted sequences. The proposed image analytic steps segmented EDMVs in white matter regions, defined on the volumetric T1-weighted images, by statistically associating the likelihood of intensity, location, and tubular shape on SWI. The volumes of the segmented EDMVs, calculated in each hemisphere, were compared between affected and unaffected hemispheres. EDMV volumes were also correlated with visually assessed EDMV scores, hemispheric white matter volumes, and cortical surface areas. Parametric tests including Pearson's correlation, unpaired and paired t-tests, were used. A P value <0.05 was considered statistically significant. Results: It was found that EDMVs were identified well in SWS-affected hemispheres while calcified regions were excluded. Mean EDMV volumes in the SWS-affected hemispheres were 10-12-fold greater than in the unaffected or healthy control hemispheres; while white matter volumes and cortical surface areas were lower. EDMV volumes in the SWS-affected hemispheres showed a strong positive correlation with the visual EDMV scores (r=0.88, P=0.001) and an inverse correlation with cortical surface area ratios (r=-0.65, P=0.04) but no correlation with white matter volume ratios. Conclusions: EDMVs were detected in the SWS-affected atrophic hemispheres reliably while avoiding calcified regions. The approach can be used to quantify enlarged deep cerebral veins in the human brain, which may provide a potential marker of cerebral venous remodeling.

3.
Sci Rep ; 13(1): 11489, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460615

RESUMEN

Analysis of 3D medical imaging data has been a large topic of focus in the area of Machine Learning/Artificial Intelligence, though little work has been done in algorithmic (particularly unsupervised) analysis of neonatal brain MRI's. A myriad of conditions can manifest at an early age, including neonatal encephalopathy (NE), which can result in lifelong physical consequences. As such, there is a dire need for better biomarkers of NE and other conditions. The objective of the study is to improve identification of anomalies and prognostication of neonatal MRI brain scans. We introduce a framework designed to support the analysis and assessment of neonatal MRI brain scans, the results of which can be used as an aid to neuroradiologists. We explored the efficacy of the framework through iterations of several deep convolutional Autoencoder (AE) unsupervised modeling architectures designed to learn normalcy of the neonatal brain structure. We tested this framework on the developing human connectome project (dHCP) dataset with 97 patients that were previously categorized by severity. Our framework demonstrated the model's ability to identify and distinguish subtle morphological signatures present in brain structures. Normal and abnormal neonatal brain scans can be distinguished with reasonable accuracy, correctly categorizing them in up to 83% of cases. Most critically, new brain anomalies originally missed during the radiological reading were identified and corroborated by a neuroradiologist. This framework and our modeling approach demonstrate an ability to improve prognostication of neonatal brain conditions and are able to localize new anomalies.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Recién Nacido , Encefalopatías/diagnóstico por imagen
4.
Brain Commun ; 5(2): fcad111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228850

RESUMEN

Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.

5.
Clin Neurophysiol ; 150: 17-30, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36989866

RESUMEN

OBJECTIVE: To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS: We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS: Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS: The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE: Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Niño , Sevoflurano/efectos adversos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Encéfalo , Electrocorticografía/métodos , Convulsiones , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía/métodos
6.
Pediatr Neurol ; 139: 49-58, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36521316

RESUMEN

BACKGROUND: Enlarged deep medullary veins (EDMVs) in patients with Sturge-Weber syndrome (SWS) may provide compensatory venous drainage for brain regions affected by the leptomeningeal venous malformation (LVM). We evaluated the prevalence, extent, hemispheric differences, and clinical correlates of EDMVs in SWS. METHODS: Fifty children (median age: 4.5 years) with unilateral SWS underwent brain magnetic resonance imaging prospectively including susceptibility-weighted imaging (SWI); children aged 2.5 years or older also had a formal neurocognitive evaluation. The extent of EDMVs was assessed on SWI by using an EDMV hemispheric score, which was compared between patients with right and left SWS and correlated with clinical variables. RESULTS: EDMVs were present in 89% (24 of 27) of right and 78% (18 of 23) of left SWS brains. Extensive EDMVs (score >6) were more frequent in right (33%) than in left SWS (9%; P = 0.046) and commonly occurred in young children with right SWS. Patients with EDMV scores >4 had rare (less than monthly) seizures, whereas 35% (11 of 31) of patients with EDMV scores ≤4 had monthly or more frequent seizures (P = 0.003). In patients with right SWS and at least two LVM-affected lobes, higher EDMV scores were associated with higher intelligence quotient (P < 0.05). CONCLUSIONS: Enlarged deep medullary veins are common in unilateral SWS, but extensive EDMVs appear to develop more commonly and earlier in right hemispheric SWS. Deep venous remodeling may be a compensatory mechanism contributing to better clinical outcomes in some patients with SWS.


Asunto(s)
Síndrome de Sturge-Weber , Niño , Humanos , Preescolar , Síndrome de Sturge-Weber/complicaciones , Convulsiones/complicaciones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/patología
7.
IEEE J Biomed Health Inform ; 26(11): 5529-5539, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35925854

RESUMEN

The present study investigates the effectiveness of a deep learning neural network for non-invasively localizing the seizure onset zone (SOZ) using multi-modal MRI data that are clinically acquired from children with drug-resistant epilepsy. A cortical parcellation was applied to localize the SOZ in cortical nodes of the epileptogenic hemisphere. At each node, the laminar surface analysis was followed to sample 1) the relative intensity of gray matter and white matter in multi-modal MRI and 2) the neighboring white matter connectivity using diffusion tractography edge strengths. A cross-validation was employed to train and test all layers of a multi-scale residual neural network (msResNet) that can classify SOZ node in an end-to-end fashion. A prediction probability of a given node belonging to the SOZ class was proposed as a non-invasive MRI marker of seizure onset likelihood. In an independent validation cohort, the proposed MRI marker provided a very large effect size of Cohen's d = 1.21 between SOZ and non-SOZ, and classified SOZ with a balanced accuracy of 0.75 in lesional and 0.67 in non-lesional MRI groups. The subsequent multi-variate logistic regression found the incorporation of the proposed MRI marker into interictal intracranial EEG (iEEG) markers further improves the differentiation between the epileptogenic focus (defined as SOZ resected during surgery) and non-epileptogenic sites (i.e., non-SOZ sites preserved during surgery) up to 15 % in non-lesional MRI group, suggesting that the proposed MRI marker could improve the localization of epileptogenic foci for successful pediatric epilepsy surgery.


Asunto(s)
Aprendizaje Profundo , Epilepsia Refractaria , Epilepsia , Niño , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Convulsiones , Electrocorticografía , Imagen por Resonancia Magnética , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Electroencefalografía , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía
8.
Neuroimage ; 258: 119342, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654375

RESUMEN

PURPOSE: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. METHODS: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70-110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. RESULTS: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. CONCLUSIONS: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech-sound perception after birth.


Asunto(s)
Corteza Auditiva , Epilepsia Refractaria , Percepción del Habla , Estimulación Acústica/métodos , Adulto , Corteza Auditiva/diagnóstico por imagen , Percepción Auditiva/fisiología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Humanos , Lactante , Lenguaje
9.
Epilepsia ; 63(7): 1787-1798, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388455

RESUMEN

OBJECTIVE: To determine the structural networks that constrain propagation of ictal oscillations during epileptic spasm events, and compare the observed propagation patterns across patients with successful or unsuccessful surgical outcomes. METHODS: Subdural electrode recordings of 18 young patients (age 1-11 years) were analyzed during epileptic spasm events to determine ictal networks and quantify the amplitude and onset time of ictal oscillations across the cortical surface. Corresponding structural networks were generated with diffusion magnetic resonance imaging (MRI) tractography by seeding the cortical region associated with the earliest average oscillation onset time, and white matter pathways connecting active electrode regions within the ictal network were isolated. Properties of this structural network were used to predict oscillation onset times and amplitudes, and this relationship was compared across patients who did and did not achieve seizure freedom following resective surgery. RESULTS: Onset propagation patterns were relatively consistent across each patient's spasm events. An electrode's average ictal oscillation onset latency was most significantly associated with the length of direct corticocortical tracts connecting to the area with the earliest average oscillation onset (p < .001, model R2  = .54). Moreover, patients demonstrating a faster propagation of ictal oscillation signals within the corticocortical network were more likely to have seizure recurrence following resective surgery (p = .039). In addition, ictal oscillation amplitude was associated with connecting tractography length and weighted fractional anisotropy (FA) measures along these pathways (p = .002/.030, model R2  = .31/.25). Characteristics of analogous corticothalamic pathways did not show significant associations with ictal oscillation onset latency or amplitude. SIGNIFICANCE: Spatiotemporal propagation patterns of high-frequency activity in epileptic spasms align with length and FA measures from onset-originating corticocortical pathways. Considering the data in this individualized framework may help inform surgical decision-making and expectations of surgical outcomes.


Asunto(s)
Electroencefalografía , Espasmos Infantiles , Niño , Preescolar , Imagen de Difusión Tensora , Electroencefalografía/métodos , Humanos , Lactante , Convulsiones/cirugía , Espasmo , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/cirugía
10.
Neuroimage ; 254: 119126, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35331870

RESUMEN

OBJECTIVE: Our daily activities require frequent switches among competing responses at the millisecond time scale. We determined the spatiotemporal characteristics and functional significance of rapid, large-scale brain network dynamics during task switching. METHODS: This cross-sectional study investigated patients with drug-resistant focal epilepsy who played a Lumosity cognitive flexibility training game during intracranial electroencephalography (iEEG) recording. According to a given task rule, unpredictably switching across trials, participants had to swipe the screen in the direction the stimulus was pointing or moving. Using this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation occurring more intensely during switch than repeat trials, unattributable to the effect of task rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and moving was same or different in a given trial), or accuracy of an immediately preceding response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical regions showing enhanced activation during task switch trials were directly connected by white matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related high-gamma augmentation was altered through practice and whether high-gamma amplitude predicted the accuracy of an upcoming response among switch trials. RESULTS: The average number of completed trials during five-minute gameplay was 221.4 per patient (range: 171-285). Task switch trials increased the response times, whereas later trials reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed the presence of direct white matter tracts connecting the right visual areas to the precuneus and anterior middle-frontal regions but not between the right precuneus and anterior middle-frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent responses among switch trials. CONCLUSIONS: Our multimodal analysis uncovered two temporally and functionally distinct network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus pathway may reflect the neural process facilitating an attentional shift to a given updated task rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through practice, may reflect the cost of executing appropriate stimulus-response translation.


Asunto(s)
Encéfalo , Epilepsia Refractaria , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estudios Transversales , Electrocorticografía/métodos , Electroencefalografía/métodos , Humanos , Tiempo de Reacción/fisiología
11.
Brain ; 145(2): 517-530, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35313351

RESUMEN

This prospective study determined the use of intracranially recorded spectral responses during naming tasks in predicting neuropsychological performance following epilepsy surgery. We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative neuropsychological assessment and intracranial EEG recording. The Clinical Evaluation of Language Fundamentals evaluated the baseline and postoperative language function. During extra-operative intracranial EEG recording, we assigned patients to undergo auditory and picture naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-related amplitude modulations, including high gamma augmentation at 70-110 Hz. We surgically removed the presumed epileptogenic zone based on the intracranial EEG and MRI abnormalities while maximally preserving the eloquent areas defined by electrical stimulation mapping. The multivariate regression model incorporating auditory naming-related high gamma augmentation predicted the postoperative changes in Core Language Score with r2 of 0.37 and in Expressive Language Index with r2 of 0.32. Independently of the effects of epilepsy and neuroimaging profiles, higher high gamma augmentation at the resected language-dominant hemispheric area predicted a more severe postoperative decline in Core Language Score and Expressive Language Index. Conversely, the model incorporating picture naming-related high gamma augmentation predicted the change in Receptive Language Index with an r2 of 0.50. Higher high gamma augmentation independently predicted a more severe postoperative decline in Receptive Language Index. Ancillary regression analysis indicated that naming-related low gamma augmentation and alpha/beta attenuation likewise independently predicted a more severe Core Language Score decline. The machine learning-based prediction model suggested that naming-related high gamma augmentation, among all spectral responses used as predictors, most strongly contributed to the improved prediction of patients showing a >5-point Core Language Score decline (reflecting the lower 25th percentile among patients). We generated the model-based atlas visualizing sites, which, if resected, would lead to such a language decline. With a 5-fold cross-validation procedure, the auditory naming-based model predicted patients who had such a postoperative language decline with an accuracy of 0.80. The model indicated that virtual resection of an electrical stimulation mapping-defined language site would have increased the relative risk of the Core Language Score decline by 5.28 (95% confidence interval: 3.47-8.02). Especially, that of an electrical stimulation mapping-defined receptive language site would have maximized it to 15.90 (95% confidence interval: 9.59-26.33). In summary, naming-related spectral responses predict neuropsychological outcomes after epilepsy surgery. We have provided our prediction model as an open-source material, which will indicate the postoperative language function of future patients and facilitate external validation at tertiary epilepsy centres.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Complicaciones Cognitivas Postoperatorias , Mapeo Encefálico/métodos , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Epilepsia/cirugía , Humanos , Estudios Prospectivos
12.
Curr Biol ; 32(7): 1457-1469.e4, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35172128

RESUMEN

Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.


Asunto(s)
Corteza Prefrontal , Lóbulo Temporal , Adolescente , Niño , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Reconocimiento en Psicología , Lóbulo Temporal/fisiología , Ritmo Teta/fisiología
14.
Pediatr Res ; 91(6): 1505-1515, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33966055

RESUMEN

BACKGROUND: Better biomarkers of eventual outcome are needed for neonatal encephalopathy. To identify the most potent neonatal imaging marker associated with 2-year outcomes, we retrospectively performed diffusion-weighted imaging connectome (DWIC) and fixel-based analysis (FBA) on magnetic resonance imaging (MRI) obtained in the first 4 weeks of life in term neonatal encephalopathy newborns. METHODS: Diffusion tractography was available in 15 out of 24 babies with MRI, five each with normal, abnormal motor outcome, or death. All 15 except one underwent hypothermia as initial treatment. In abnormal motor and death groups, DWIC found 19 white matter pathways with severely disrupted fiber orientation distributions. RESULTS: Using random forest classification, these disruptions predicted the follow-up outcomes with 89-99% accuracy. These pathways showed reduced integrity in abnormal motor and death vs. normal tone groups (p < 10-6). Using ranked supervised multi-view canonical correlation and depicting just three of the five dimensions of the analysis, the abnormal motor and death were clearly differentiated from each other and the normal tone group. CONCLUSIONS: This study suggests that a machine-learning model for prediction using early DWIC and FBA could be a possible way of developing biomarkers in large MRI datasets having clinical outcomes. IMPACT: Early connectome and FBA of clinically acquired DWI provide a new noninvasive imaging tool to predict the long-term motor outcomes after birth, based on the severity of white matter injury. Disrupted white matter connectivity as a novel neonatal marker achieves high accuracy of 89-99% to predict 2-year motor outcomes using conventional machine-learning classification. The proposed neonatal marker may allow better prognostication that is important to elucidate neural repair mechanisms and evaluate treatment modalities in neonatal encephalopathy.


Asunto(s)
Lesiones Encefálicas , Conectoma , Enfermedades del Recién Nacido , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Recién Nacido , Enfermedades del Recién Nacido/patología , Estudios Retrospectivos
15.
Brain ; 144(11): 3340-3354, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34849596

RESUMEN

During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Lenguaje , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adolescente , Atlas como Asunto , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Electrocorticografía , Femenino , Humanos , Masculino , Modelos Neurológicos , Adulto Joven
16.
Epilepsia ; 62(10): 2372-2384, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324194

RESUMEN

OBJECTIVE: This study was undertaken to build and validate a novel dynamic tractography-based model for localizing interictal spike sources and visualizing monosynaptic spike propagations through the white matter. METHODS: This cross-sectional study investigated 1900 spike events recorded in 19 patients with drug-resistant temporal lobe epilepsy (TLE) who underwent extraoperative intracranial electroencephalography (iEEG) and resective surgery. Twelve patients had mesial TLE (mTLE) without a magnetic resonance imaging-visible mass lesion. The remaining seven had a mass lesion in the temporal lobe neocortex. We identified the leading and lagging sites, defined as those initially and subsequently (but within ≤50 ms) showing spike-related augmentation of broadband iEEG activity. In each patient, we estimated the sources of 100 spike discharges using the latencies at given electrode sites and diffusion-weighted imaging-based streamline length measures. We determined whether the spatial relationship between the estimated spike sources and resection was associated with postoperative seizure outcomes. We generated videos presenting the spatiotemporal change of spike-related fiber activation sites by estimating the propagation velocity using the streamline length and spike latency measures. RESULTS: The spike propagation velocity from the source was 1.03 mm/ms on average (95% confidence interval = .91-1.15) across 133 tracts noted in the 19 patients. The estimated spike sources in mTLE patients with International League Against Epilepsy Class 1 outcome were more likely to be in the resected area (83.9% vs. 72.3%, φ = .137, p < .001) and in the medial temporal lobe region (80.5% vs. 72.5%, φ = .090, p = .002) than those associated with the Class ≥2 outcomes. The resulting video successfully animated spike propagations, which were confined within the temporal lobe in mTLE but involved extratemporal lobe areas in lesional TLE. SIGNIFICANCE: We have, for the first time, provided dynamic tractography visualizing the spatiotemporal profiles of rapid propagations of interictal spikes through the white matter. Dynamic tractography has the potential to serve as a unique epilepsy biomarker.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Estudios Transversales , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Humanos
17.
Brain Commun ; 3(2): fcab042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959709

RESUMEN

Researchers have looked for rapidly- and objectively-measurable electrophysiology biomarkers that accurately localize the epileptogenic zone. Promising candidates include interictal high-frequency oscillation and phase-amplitude coupling. Investigators have independently created the toolboxes that compute the high-frequency oscillation rate and the severity of phase-amplitude coupling. This study of 135 patients determined what toolboxes and analytic approaches would optimally classify patients achieving post-operative seizure control. Four different detector toolboxes computed the rate of high-frequency oscillation at ≥80 Hz at intracranial EEG channels. Another toolbox calculated the modulation index reflecting the strength of phase-amplitude coupling between high-frequency oscillation and slow-wave at 3-4 Hz. We defined the completeness of resection of interictally-abnormal regions as the subtraction of high-frequency oscillation rate (or modulation index) averaged across all preserved sites from that averaged across all resected sites. We computed the outcome classification accuracy of the logistic regression-based standard model considering clinical, ictal intracranial EEG and neuroimaging variables alone. We then determined how well the incorporation of high-frequency oscillation/modulation index would improve the standard model mentioned above. To assess the anatomical variability across non-epileptic sites, we generated the normative atlas of detector-specific high-frequency oscillation and modulation index. Each atlas allowed us to compute the statistical deviation of high-frequency oscillation/modulation index from the non-epileptic mean. We determined whether the model accuracy would be improved by incorporating absolute or normalized high-frequency oscillation/modulation index as a biomarker assessing interictally-abnormal regions. We finally determined whether the model accuracy would be improved by selectively incorporating high-frequency oscillation verified to have high-frequency oscillatory components unattributable to a high-pass filtering effect. Ninety-five patients achieved successful seizure control, defined as International League against Epilepsy class 1 outcome. Multivariate logistic regression analysis demonstrated that complete resection of interictally-abnormal regions additively increased the chance of success. The model accuracy was further improved by incorporating z-score normalized high-frequency oscillation/modulation index or selective incorporation of verified high-frequency oscillation. The standard model had a classification accuracy of 0.75. Incorporation of normalized high-frequency oscillation/modulation index or verified high-frequency oscillation improved the classification accuracy up to 0.82. These outcome prediction models survived the cross-validation process and demonstrated an agreement between the model-based likelihood of success and the observed success on an individual basis. Interictal high-frequency oscillation and modulation index had a comparably additive utility in epilepsy presurgical evaluation. Our empirical data support the theoretical notion that the prediction of post-operative seizure outcomes can be optimized with the consideration of both interictal and ictal abnormalities.

18.
Hum Brain Mapp ; 42(10): 3326-3338, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949048

RESUMEN

This study investigated whether current state-of-the-art deep reasoning network analysis on psychometry-driven diffusion tractography connectome can accurately predict expressive and receptive language scores in a cohort of young children with persistent language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural network combined with a relational network (dilated CNN + RN) was trained to reason the nonlinear relationship between "dilated CNN features of language network" and "clinically acquired language score". Three-fold cross-validation was then used to compare the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN-predicted and actual language scores. The dilated CNN + RN outperformed other methods providing the most significant correlation between predicted and actual scores (i.e., Pearson's R/p-value: 1.00/<.001 and .99/<.001 for expressive and receptive language scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The strength of the relationship suggests elevated probability in the prediction of both expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically, sparse connectivity not only within the right precentral gyrus but also involving the right caudate had the strongest relationship between deficit in both the expressive and receptive language domains. Subsequent subgroup analyses inferred that the effectiveness of the dilated CNN + RN-based prediction of language score(s) was independent of time interval (between MRI and language assessment) and age of MRI, suggesting that the dilated CNN + RN using psychometry-driven diffusion tractography connectome may be useful for prediction of the presence of language disorder, and possibly provide a better understanding of the neurological mechanisms of language deficits in young children.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Aprendizaje Profundo , Imagen de Difusión Tensora , Trastornos del Lenguaje/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adolescente , Corteza Cerebral/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Trastornos del Lenguaje/patología , Trastornos del Lenguaje/fisiopatología , Masculino , Red Nerviosa/patología , Psicometría
19.
Epilepsy Behav ; 117: 107909, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33740493

RESUMEN

PURPOSE: Focal epilepsy is a risk factor for language impairment in children. We investigated whether the current state-of-the-art deep learning network on diffusion tractography connectome can accurately predict expressive and receptive language scores of children with epilepsy. METHODS: We studied 37 children with a diagnosis of drug-resistant focal epilepsy (age: 11.8 ±â€¯3.1 years) using 3 T MRI and diffusion tractography connectome: G = (S, Ω), where S is an adjacency matrix of edges representing the connectivity strength (number of white-matter tract streamlines) between each pair of brain regions, and Ω reflects a set of brain regions. A convolutional neural network (CNN) was trained to learn the nonlinear relationship between 'S (input)' and 'language score (output)'. Repeated hold-out validation was then employed to measure the Pearson correlation and mean absolute error (MAE) between CNN-predicted and actual language scores. RESULTS: We found that CNN-predicted and actual scores were significantly correlated (i.e., Pearson's R/p-value: 0.82/<0.001 and 0.75/<0.001), yielding MAE: 7.77 and 7.40 for expressive and receptive scores, respectively. Specifically, sparse connectivity not only within the left cortico-cortical network but also involving the right subcortical structures was predictive of language impairment of expressive or receptive domain. Subsequent subgroup analyses inferred that the effectiveness of diffusion tractography-based prediction of language outcome was independent of clinical variables. Intrinsic diffusion tractography connectome properties may be useful for predicting the severity of baseline language dysfunction and possibly provide a better understanding of the biological mechanisms of epilepsy-related language impairment in children.


Asunto(s)
Conectoma , Aprendizaje Profundo , Epilepsias Parciales , Sustancia Blanca , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Imagen de Difusión Tensora , Epilepsias Parciales/diagnóstico por imagen , Humanos , Sustancia Blanca/diagnóstico por imagen
20.
Clin Neurophysiol ; 132(2): 520-529, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450573

RESUMEN

OBJECTIVE: To visualize and validate the dynamics of interhemispheric neural propagations induced by single-pulse electrical stimulation (SPES). METHODS: This methodological study included three patients with drug-resistant focal epilepsy who underwent measurement of cortico-cortical spectral responses (CCSRs) during bilateral stereo-electroencephalography recording. We delivered SPES to 83 electrode pairs and analyzed CCSRs recorded at 268 nonepileptic electrode sites. Diffusion-weighted imaging (DWI) tractography localized the interhemispheric white matter pathways as streamlines directly connecting two electrode sites. We localized and visualized the putative SPES-related fiber activation, at each 1-ms time window, based on the propagation velocity defined as the DWI-based streamline length divided by the early CCSR peak latency. RESULTS: The resulting movie, herein referred to as four-dimensional tractography, delineated the spatiotemporal dynamics of fiber activation via the corpus callosum and anterior commissure. Longer streamline length was associated with delayed peak latency and smaller amplitude of CCSRs. The cortical regions adjacent to each fiber activation site indeed exhibited CCSRs at the same time window. CONCLUSIONS: Our four-dimensional tractography successfully animated neural propagations via distinct interhemispheric pathways. SIGNIFICANCE: Our novel animation method has the potential to help investigators in addressing the mechanistic significance of the interhemispheric network dynamics supporting physiological function.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Epilepsia Refractaria/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Niño , Cuerpo Calloso/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Potenciales Evocados , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Sustancia Blanca/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...